Symmetric Projection Methods for Differential Equations on Manifolds
نویسنده
چکیده
Projection methods are a standard approach for the numerical solution of differential equations on manifolds. It is known that geometric properties (such as symplecticity or reversibility) are usually destroyed by such a discretization, even when the basic method is symplectic or symmetric. In this article, we introduce a new kind of projection methods, which allows us to recover the time-reversibility, an important property for long-time integrations. AMS subject classification: 65L06.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملGeometric Integration of Ordinary Differential Equations on Manifolds
This article illustrates how classical integration methods for differential equations on manifolds can be modified in order to preserve certain geometric properties of the exact flow. Projection methods as well as integrators based on local coordinates are considered. The central ideas of this article have been presented at the 40th anniversary meeting of the journal BIT. AMS subject classifica...
متن کاملLinear Hamiltonians on homogeneous Kähler manifolds of coherent states
Representations of coherent state Lie algebras on coherent state manifolds as first order differential operators are presented. The explicit expressions of the differential action of the generators of semisimple Lie groups determine for linear Hamiltonians in the generators of the groups first order differential equations of motion with holomorphic polynomials coefficients. For hermitian symmet...
متن کامل